Showing posts with label process control. Show all posts
Showing posts with label process control. Show all posts

Measuring Brix

Brix measures sugar content
Degrees Brix is the unit used to determine
sugar content in a solution.
Degrees Brix is a measurement unit to determine sugar content, typically in the food and beverage industry using a refractometer. Brix measurements allow precise quality control for sugar levels in different beverages, with one degree Brix equating to 1 gram of sucrose in 100 grams of solution. While sucrose is the primary element measured by the Brix reading, it is important to understand how other ingredients affect the Brix reading. The Brix reading can relatively calculate the amount of sweetener in a certain product in addition to exactly calculating the previously mentioned sucrose level.

Sucrose and other sweeteners allow for members of the food and beverage industry to create unique recipes for their products. However, a sucrose solution dissolved in water will return different Brix values than a soda because other elements in the process impact the Brix reading. To account for these shifting variables, a Brix value can be measured through either density or refractive index. Specific control parameters need to be established prior to measuring these solutions with refractometers, thus causing the term “Refractive Brix” to be used when comparing samples against results obtained via different calculation methods. Along with the numerical sugar concentration of a particular product, a product’s sugar concentration correlates to the product’s sweetness, giving controllers the ability to ensure repeatability in their process.

Process refractometers monitor and control
the quality of products containing sugar by
measuring Brix. 
Alongside Brix’s main functionality as an indicator of sucrose, high fructose corn syrup (HFCS) has become popular in the food and beverage industry as a replacement for sucrose. Recently, the amount of HFCS in a certain product has also been expressed as Brix, allowing for the Brix degree measurement to expand past its original purpose. Digital refractometers have become increasingly popular in measuring Brix degrees and also the percentage of HFCS in a certain product. These dual measurement possibilities allow operators to compare the content of a certain substance across multiple variables of sweetness. Additionally, the availability of these measurements in a certain process via the same measurement device allows for simplification of the measurement process. Hydrometers are another method used to measure Brix, although, as opposed to refractometers, variations in operator control may cause the results of a hydrometer test to be different. Both Brix and HFCS allow for food and beverage controllers to maintain cost and quality control, both in determining how much sucrose should be used in the process and to ensure each individual product meets quality standards.

Electron Machine Corporation

Bleaching of Pulp in the Paper Making Process

The purpose of the bleaching process is to enhance the physical and optical qualities (whiteness and brightness) of the pulp by removing or decolorizing the lignin. Two approaches are used in the chemical bleaching of pulps. One approach called brightening, uses selective chemicals, such as hydrogen peroxide, that destroy chromatographic groups but do not attack the lignin. Brightening produces a product with a temporary brightness (such as newspaper) that discolors from exposure to sunlight or oxygen. The other approach (true bleaching) seeks to almost totally remove residual lignin by adding oxidizing chemicals to the pulp in varying combinations of sequences, depending on the end use of the product. This creates a longer lasting (sometimes permanent) whiteness, but it weakens the fibers and reduces sheet strength. The most common bleaching and brightening agents are chlorine, chlorine dioxide, hydrogen peroxide and sodium hydroxide.

Typically, the pulp is treated with each chemical in a separate stage. Each stage includes a tower, where the bleaching occurs; a washer, which removes bleaching chemicals and dissolved lignins from the pulp prior to entering the next stage; and a seal tank, which collects the washer effluent to be used as wash water in other stages or to be sewered. Bleaching processes use various combinations of chemical stages called bleaching sequences.

The first stage in the bleaching process is the chlorination stage, whose primary function is to further delignify the pulp. Chlorine reacts with lignin to form compounds that are water-soluble or soluble in an alkaline medium, which aids in delignifying the pulp before it proceeds to the next bleaching stage.

The next stage after chlorination is typically the extraction stage. This stage and the remaining stages serve to bleach and whiten the delignified pulp. The extraction stage removes the chlorinated and oxidized lignin by solubilization in a caustic solution.

Chlorine dioxide is often used in bleaching, either in the chlorination stage (as a substitute for some of the chlorine usage - chlorine dioxide substitution) or as an additional chlorine dioxide stage. Chlorine dioxide has 2.63 times greater oxidizing power (on a pound per pound basis) than chlorine and is used for nearly all high brightness pulps.

The next stage is the actual bleaching stage. Hypochlorite is a true bleaching agent that destroys certain chromophobic groups of lignin. It also attacks the pulp so high cellulose degradation occurs in Kraft pulp. Application of hypochlorite to Kraft pulp is usually used only as an intermediate stage of the sequence or to produce semi-bleached pulps. In the bleach process, residual chlorine must be removed through washing in vacuum washers.

Abstracted from Washington State
Air Toxic Sources and Emission
Estimation Methods

Introduction to Industrial Instrumentation

industrial control
Engineer adjusting a
process controller measuring 
the refractive index of a process.
Instrumentation is the science of automated measurement and control. Applications of this science abound in modern research, industry, and everyday living. From automobile engine control systems to home thermostats to aircraft autopilots to the manufacture of pharmaceutical drugs, automation surrounds us. This chapter explains some of the fundamental principles of industrial instrumentation.

The first step, naturally, is measurement. If we can’t measure something, it is really pointless to try to control it. This “something” usually takes one of the following forms in industry:
  • Fluid pressure
  • Fluid flow rate
  • The temperature of an object
  • Fluid volume stored in a vessel
  • Chemical concentration
  • Machine position, motion, or acceleration
  • Physical dimension(s) of an object
  • Count (inventory) of objects
  • Electrical voltage, current, or resistance
  • Refractive Index
Once we measure the quantity we are interested in, we usually transmit a signal representing this quantity to an indicating or computing device where either human or automated action then takes place. If the controlling action is automated, the computer sends a signal to a final controlling device which then influences the quantity being measured.

This final control device usually takes one of the following forms:
  • Control valve (for throttling the flow rate of a fluid)
  • Electric motor
  • Electric heater
Both the measurement device and the final control device connect to some physical system which we call the process. To show this as a general block diagram:

Process control loop
Process control loop
The common home thermostat is an example of a measurement and control system, with the home’s internal air temperature being the “process” under control. In this example, the thermostat usually serves two functions: sensing and control, while the home’s heater adds heat to the home to increase temperature, and/or the home’s air conditioner extracts heat from the home to decrease temperature. The job of this control system is to maintain air temperature at some comfortable level, with the heater or air conditioner taking action to correct temperature if it strays too far from the desired value (called the setpoint).

Industrial measurement and control systems have their own unique terms and standards. Here are some common instrumentation terms and their definitions:

Process: The physical system we are attempting to control or measure. Examples: water filtration system, molten metal casting system, steam boiler, oil refinery unit, power generation unit.

Process Variable, or PV: The specific quantity we are measuring in a process. Examples: pressure, level, temperature, flow, electrical conductivity, pH, position, speed, vibration.

Setpoint, or SP: The value at which we desire the process variable to be maintained at. In other words, the “target” value for the process variable.

Primary Sensing Element, or PSE: A device directly sensing the process variable and translating that sensed quantity into an analog representation (electrical voltage, current, resistance; mechanical force, motion, etc.). Examples: thermocouple, thermistor, bourdon tube, microphone, potentiometer, electrochemical cell, accelerometer.

Refractive Index Transducer
Example of a transducer.
In this case, a
Refractive Index transducer.
Transducer: A device converting one standardized instrumentation signal into another standardized
instrumentation signal, and/or performing some sort of processing on that signal. Often referred to as a converter and sometimes as a “relay.” Examples: I/P converter (converts 4- 20 mA electric signal into 3-15 PSI pneumatic signal), P/I converter (converts 3-15 PSI pneumatic signal into 4-20 mA electric signal), square-root extractor (calculates the square root of the input signal).
Note: in general science parlance, a “transducer” is any device converting one form of energy into another, such as a microphone or a thermocouple. In industrial instrumentation, however, we generally use “primary sensing element” to describe this concept and reserve the word “transducer” to specifically refer to a conversion device for standardized instrumentation signals.

Transmitter: A device translating the signal produced by a primary sensing element (PSE) into a standardized instrumentation signal such as 3-15 PSI air pressure, 4-20 mA DC electric current, Fieldbus digital signal packet, etc., which may then be conveyed to an indicating device, a controlling device, or both.

Refractive Index Transmitter/Controller
Example of a transmitter and/or
controller. In this case, refractive
index signal conditioning electronics
to modify the transducer signal,
and optionally, provide a control
output to a final control element.
Lower- and Upper-range values, abbreviated LRV and URV, respectively: the values of process oC and its URV would be 500 oC.
measurement deemed to be 0% and 100% of a transmitter’s calibrated range. For example, if a temperature transmitter is calibrated to measure a range of temperature starting at 300 degrees Celsius and ending at 500 degrees Celsius, its LRV would be 300

Zero and Span: alternative descriptions to LRV and URV for the 0% and 100% points of an instrument’s calibrated range. “Zero” refers to the beginning-point of an instrument’s range (equivalent to LRV), while “span” refers to the width of its range (URV − LRV). For example, if a temperature transmitter is calibrated to measure a range of temperature starting at 300 degrees Celsius and ending at 500 degrees Celsius, its zero would be 300 oC and its span would be 200 oC.

Controller: A device receiving a process variable (PV) signal from a primary sensing element (PSE) or transmitter, comparing that signal to the desired value (called the setpoint) for that process variable, and calculating an appropriate output signal value to be sent to a final control element (FCE) such as an electric motor or control valve.

Final Control Element, or FCE: A device receiving the signal output by a controller to directly influence the process. Examples: variable-speed electric motor, control valve, electric heater.

Manipulated Variable, or MV: The quantity in a process we adjust or otherwise manipulate in order to influence the process variable (PV). Also used to describe the output signal generated by a controller; i.e. the signal commanding (“manipulating”) the final control element to influence the process.

Reprinted from Lessons In Industrial Instrumentation by Tony R. Kuphaldt under the terms and conditions of the Creative Commons Attribution 4.0 International Public License.

Don't Forget Customer Support and Technical Support When Buying Process Instruments

Happy Customer Service
Make sure your vendor's Customer Service and Tech Support
are knowledgeable, experienced, and ENTHUSIASTIC.
Today, many engineers do their product selection largely via the Internet, and usually by just comparing specifications between manufacturers. While this provides a fast, efficient, and objective means to narrow down prospective vendors, it totally ignores a critically important (albeit subjective) component to the success of their project - the vendor's Customer and Technical Support infrastructure.

When choosing a vendor for process instrumentation (industrial refractometers for instance), it's imperative to include an evaluation of the vendor's Technical Support and Customer Support infrastructure. Realizing what these professionals have to contribute, and taking advantage of their knowledge and talent, will save time and money, and greatly contribute to a successful project outcome.

Understanding Why Technical Support and Customer Support are Critical

It's all about two things:
  1. Experience
  2. Attitude


"If you think it's expensive to hire a professional to do the job, wait until you hire an amateur." Red Adair

By the nature of their job, Customer Service personnel are current on new products, their capabilities and their proper application. Unlike anecdotal information available on the Web, support personnel have first hand knowledge and hands-on experience. They've seen successful (and unsuccessful) product implementation scenarios and are eager to share. A brief discussion about your application with a specialist will guide you toward selecting the best equipment for the requirement. Also, because they are exposed to so many different applications and situations, Customer/Tech Support personnel are a wealth of ancillary application knowledge.

As a project engineer, you may be treading on fresh ground regarding some aspects of fully understanding the project you're working on. You may not have a full grasp on how to handle a particular challenge presented by the application. Calling upon a source with past exposure and experience to your current application prior to product selection will provide a very real, and very valuable benefit.


"Customer service is not a department, it’s everyone’s job." Anonymous

Choose a company that places a huge emphasis on customer service and do some due-diligence. Determine if they're merely providing lip service, or if extreme customer service oozes from the company pores. 

Sam Walton, the founder of Walmart once said "The goal as a company is to have customer service that is not just the best, but legendary." Make sure the vendor you're evaluating sees things the same way.  While reviews or testimonials (if there are any) can be helpful, they should be viewed judiciously. You're going to have to talk to people and get your own "gut-feel".  Do the employee's seem upbeat and happy? Are they knowledgeable? If they can't answer a question, do they volunteer to connect you with someone who can?  Are they enthusiastic?

As an engineer who designs or manufactures a product or process, it's strongly recommended you make the effort to research, contact, and get a first-hand feel for your prospective vendor's Customer and Technical Support Team. Learn about their product and application knowledge, their experience and their commitment to excellence. Taking the time to do this will raise the likelihood that your project will come in on time, on budget and shine brightly upon you.

Industrial Refractive Index Transmitters

Loop diagram
Example flow loop diagram
showing role of transmitter.
Transmitters are process control field devices. They receive input from a connected process sensor, then convert the sensor signal to an output signal using a transmission protocol. The output signal is passed to a monitoring, control, or decision device for use in documenting, regulating, or monitoring a process or operation.

Transmitters are available for almost every measured parameter in process control, and often referred to according to the process condition which they measure.

The refractive index determines how much light is bent, or refracted, when entering a material. When light moves from one medium to another, it changes direction (refracted). This change in the direction of the light can be measured and applied to properties of the material.

Refractive Index transmitter
Example of Industrial Refractive Indextransmitter/controller.
Can act as transmitter alone, or with
optional PID control functions.
Industrial Refractive Index transmitters directly measure the refractive index of process fluids. It then conditions the input signal, making it linear, and then converts that signal into any number of customer-desired units (Brix, Percent Solids, Dissolved Solids, SGU, R.I., etc.) and transmits a standard, linear electrical output (4 to 20 mA) that can be utilized by receiving instruments and displays.

Many transmitters are provided with higher order functions in addition to merely converting an input signal to an output signal. On board displays, keypads, Bluetooth connectivity, and a host of industry standard communication protocols can also be had as an integral part of many process transmitters. Other functions that provide alarm or safety action are more frequently part of the transmitter package, as well.

Industrial Refractive Index transmitters have evolved from simple signal conversion devices to higher functioning, efficient, easy to apply and maintain instruments utilized for providing input to process control systems.

For more information on Industrial Refractive Index transmitters visit Electron Machine at or call 352-669-3101.

New Electron Machine Marketing Video

Here is a new Electron Machine marketing video. Thanks to our loyal customers around the world for your support and business. Electron Machine continues to develop innovative products that apply the refractive index for greater efficiency and safety in industrial production.

Industrial Refractometry: The Very Basics

Industrial Refractometry
Most objects can be evaluated quantitatively and qualitatively. Determining the number of cars on a highway is a quantitative calculation; determining the color of a car is a qualitative calculation. In the process control industry, analyzing the qualitative and quantitative natures of a product is one of the most important steps in ensuring a manufacturer is delivering their clients not only the best product, but making sure that every product made is the best product.

If you’ve ever cracked open a crisp, cold beer on a Sunday, sampled a great wine, or asked yourself, “why does this soda taste so good?” you’ve had experience with what the process control industry calls “industrial refractometry.” Pink Floyd’s album cover for Dark Side of the Moon, where a beam of light hits a prism at a certain angle and then exits the other side in multiple colors, illustrates a core component of refractometry. Refractometry measures the speed at which light passes through an object.

Here’s how evaluating a substance with a refractometer works: a substance is placed on top of a prism. Then, a beam of light shines through the prism and reflects through the substance. The refractometer compares how much slower (or faster) light travels through the object compared to the speed of light through air. The comparison allows the evaluator to determine qualitative aspects of the substance, such as the density or concentration. For standardization purposes, the speed at which light passes through air has a refractive index (RI) value of 1. If a substance has an RI value of 1.16, light travels 16% quicker through air compared to the substance on the prism. Depending on the color and temperature of the reflected light, even more qualitative characteristics of the substance can be determined.

Electron Machine Inline Refractometer
Electron Machine Inline Industrial Refractometer

While the process won’t always help determine what exactly a substance is (different substances can have the same RI values), refractometry is essential in determining how something is. If a corporation knows the RI value of a liquid product, they can ensure each iteration of said product is precisely made, quantitatively and qualitatively. When two substances are being combined to create one resulting substance, refractometry can show exactly how close the combined substance is to being an accurate fusion.

Overall, refractometry is used by industrial companies as a control method. Industry professionals use refractometers to perform evaluations; these refractometers range from small, hand-held devices to full-powered, computer-controlled precision machines which measure the quality of every product coming out of on an assembly line. Refractometry is an objective way to prove standards are being met while achieving production excellence, making refractometry an extremely valuable tool for industrially geared businesses of almost every size.

So, the next time you want to combine coffee and creamer, if you know the refractive value of the best cup of coffee, you could use your own refractometer to measure how close you are to the perfect morning blend!

MPR- E-Scan Inline Refractometer Settings and Readings Overview

The MPR E-Scan is an in-line process refractometer that directly measures the refractive index of process fluids and then displays the reading in any number of customer-desired units (Brix, Percent Solids, Dissolved Solids, SGU, R.I., etc.). A simple 0-10Vdc signal is used to transmit the reading from the sensing head to the electronics console, ensuring a robust reading that has a minimal chance of being effected by interference. The entire package is NEMA 4X rated and designed and manufactured with the best materials for each application to provide years of trouble-free service with a minimum amount of maintenance.

The video below provides and overview of zeroing, setting, and reading the refractometer.