Showing posts with label refractive index. Show all posts
Showing posts with label refractive index. Show all posts

The Basics of Process Refractometers

Light refractionA refractometer is a process instrument capable of determining a solution's refractive index. Light bends and changes velocity as it travels from one media into another through the media interface. When light traveling through air enters liquid, the light rays change direction by an amount determined by the liquid's density.

Angle of refraction refers to the magnitude the light bends as it exits one media and enters the interface of another. With the angle of refraction defined by their densities, different liquids display different amounts of refraction - for example, a higher density juice such as orange juice will have significantly different refraction than cranberry juice, because of its higher density.

Light refraction
Light bends when traveling through
different media. That's why this pencil
appears to be "broken" when it enters
the water.
A liquid's refractive index relates to the amount of light bending that liquid displays. The greater the bending, the greater the refractive index. The lower the bending, the lower the refractive index.

Standard tables are available that correlate refractive index to a variety of materials. These same tables also correlate refractive index to varying concentrations of particular liquid media at a particular temperature. Take corn syrup for example. Different refractive indexes are observed for different corn syrup samples of different concentrations. Therefore, by using a process refractometer to observe the refractive index of a particular corn syrup sample, a determination of the concentration of that particular sample can be made. By referring to the table or scale that correlates the refractive index to concentration at a particular fixed temperature, liquid concentration can be determined.

The refraction index of the liquid medium readings will vary at different temperatures, and therefore, the sample's temperature must be measured and compensated for in order for refractive index readings to be accurate and repeatable.

Refractive index measurements have been used for process control in the food, juice and beverage industries for decades, with the most common applications being the measurement of sugars (Brix) and total dissolved solids (TDS). Large scale production and processing of fruit juices, jams, tomato products, wine, beer, coffee, and many other products rely on industrial refractometers for quality and consistency.

For more information contact Electron Machine Corporation by visiting https://electronmachine.com or by calling 352-669-3101.

Measuring Total Soluble Solids with Refractometers

Inline, process refractometer for beverage production
Inline, process refractometer for beverage production.
Just as weight is expressed in pounds, the level of soluble solids in a solution is measured in degrees Brix (symbol °Bx).  The Brix scale is based on a solution of pure sucrose diluted with water. Adolf Brix first developed the Brix scale in the 1800s. For example, a 100 gram solution with a Brix 50 reading contains 50 grams of sugar (and other dissolved solids) and 50 grams of water.

Fruit juices, wine, nectars, and other beverages all contain soluble solids. Total Soluble Solids (TSS) refers to the total amount of soluble constituents of the juice, wine or other beverage. These are mainly sugars, with smaller amounts of amino acids, pectin, and organic acids. For example, approximately 85% of the total soluble solids of citrus fruit are sugars. Because sugar is the most abundant soluble solid, the Brix scale is used by the beverage industry in determining the sucrose equivalent of soluble solids in their products. The term "Brix" or "degrees Brix" is used interchangeably with % sucrose or % soluble solids by weight.

Refractometers are instruments that determine soluble solid concentration by evaluating the solution's refractive index. Changes in direction of a light beam passing through the solution correlate to the amount of dissolved solids in the solution. Basically, the higher the level of soluble solids in the solution, the greater the bending of the light beam. In large scale beverage plants, inline process refractometers are used to control quality and consistency by continuous monitoring of the soluble solid concentration.

For more information about measuring TSS and/or Brix in a commercial beverage production facility, contact Electron Machine by visiting https://www.electronmachine.com or calling 352-669-3101.