Showing posts with label EMC. Show all posts
Showing posts with label EMC. Show all posts

Thank You Veterans.


Our Veterans are our neighbors, friends, family, and co-workers. They took an oath to defend the United States and our Constitution, from all enemies, foreign and domestic. We must never forget their bravery, service, and sacrifice. By celebrating our Veterans, we continue to tell the story of how this country became the most powerful on Earth - through bravery, honor, truth, and determination.

Electron Machine thanks our Veterans for serving our country and protecting our freedom.

A Look Back in Electron Machine History - "A Brixometer for Fresh Juice Testing"

technical staff of Electron Machine Corp
Left to right: J.L. Moody, engineer; Ray E. Blackaby,
business manager; Edwin R. Moller, vice-president;
Francis Reed, president; Donald Stephens, technician;
Charlie Dixon, technician.
Electron Machine Corporation is very proud of our unique history and deep roots in the electronic instrumentation industry, and developed the first in-line process refractometer was developed to fulfill a need within the developing concentrated citrus industry.

Below we have posted a paper from 1961 presented to the ASME titled "A Brixometer for Fresh Juice Testing" authored by Electron Machine's former VP, Francis Reed.

On the right there is also a picture of the technical staff of Electron Machine Corp. at the time (1958) posing around the new "Brixometer". The author of the following paper is pictured fourth from the left.

We thought it would be interesting to show this deep history to our customers and associates. Enjoy.



ASME 1961 Citrus Engineering Conference
CEC 1961
March 22, 1961
Lakeland, Florida, USA

A BRIXOMETER FOR FRESH JUICE TESTING
by
Francis S, Reed
Vice President
Electron Machine Corporation
Umatilla, Florida

Industry everywhere is undergoing a complete revolution which is not apparent to the average citizen. The artistic and craftsmanship abilities of the early industrial worker to create a perfect piece of goods has been supplanted by the emphasis on mass production, lower costs and machine precision of the more recent years. As a result of this development a tremendous pressure is being exerted upon industry to produce even more for even less costs which has created a situation where the machines are now capable of exceeding the abilities of the men who operate them.

From this dilemma has come a now concept of using the speed and precision of electronic devices to replace the human judgement end control ever these processes. This situation arose in the citrus industry several years ago when the increasing capacities of each plant made it increasingly difficult to perform the blending of the concentrate manually with the same equipment and manpower as in earlier methods.

The result has been the development of a method for continuously measuring the Brix of the juice and automatically blending the product uniformly on a continuous basis.

The creation of such a measuring device which has inherently more accuracy then the usual testing devices used in processing has lead naturally to the thinking of applying this principle to the laboratory tests. Such a method would speed up the operation and produce readings of a higher degree of accuracy than tho present methods.

Also, there is the elimination of possible human errors in reading transposing, and compiling the data onto the inspection sheets. It has boon pretty well proven that even with tho best of laboratory equipment available and adequate time to make up the proper tests that no two human beings will interpolate the Brix readings identically.
Couple this human frailty with tho inherent error in tho equipment, possible variables in the test procedure and you can have variations in readings which moans hundreds of thousands of dollars to tho citrus industry.

Let us assume that an average citrus plant is using a calibrated device to measure Brix which according to present standards has an allowable tolerance of C.I degree Brix from the standard. Let us further assume that this Instrument Is checked against a standardized instrument which is allowed a tolerance of .05 degrees from the absolute Brix, we could then expect a possible error of .15 degrees Brix in tho laboratory test. Therefore, if the readings were off by this amount an average plant could lose $35,000 to $50,000 a season depending upon the price being paid for the pounds of solids at the time. If you were to assess those figures accurately for each plant you would find in some instances a considerable larger figure involved in this possible source of error. This loss can further aggravated by tho addition of other possible sources of error introduced by improper deaeration of tho juice before testing, the manner in which tho operator handles the test equipment, environmental conditions in the test area, and tho difficulty of interpolating tho readings and transposing thorn onto the records without any errors. When you add all those to the possible losses you can envision a tremendous loss.

At This point the question arises "whose loss?". If the errors add up to the processors favor, the grower loses. The reverse situation can also happen with such a wide latitude in the test operation.

Hence, all concerned in tho testing of Brix are virtually interested in a reliable instrument which would make this Brix determination accurately and present the information in digital form on the inspection sheet without having to be interpolated.

Such an instrument has been developed and is being designed to fulfill the operating conditions of the test stations and laboratories. This instrument will employ the principles of the present electronic Brixometer used in the processing operation and will allow for tho rapid and precise determination of the Brix without the attendant errors possible in the manual system. This device will accept a sample of the juice from the inspection sample and without requiring deaeration immediately present the Brix indication to the operator. The operator will zero the instrument, insert tho data sheet into a printer slot and receive the printed out Brix indication similar to the weight information printed by the scales.

The next logical step from the automatic printing of weight and Brix is to be the incorporation of an automatic determination of the acid content of the juice and from this information it wiI I be a simple matter to devise an electronic computer system which will arrive at the ratio, pounds of solids and yield figures.

The combination of these instruments into a complete inspection tool would provide an accurate, indisputable record of all testing done without the costly introduction of the multiple errors possible in the manual testing methods.

The method of electronically collecting all of tho data will lead to another field of interest to the processors in that of data compilation. This intelligence can be fed fo the modern computers to analyze many of tho conditions surrounding the procurement and utilization of tho fruit. Such systems are now in use in many of the large industries in the country and more smaller industries are finding out the advantages of data compilations and statistical analysis of their product end its utilization. In fact, we predict that within a very few years there will be thru the utilization of the tremendous advantages in electronic instrumentation, completely automatic processing available to all types of industry.

You can download a copy of the original paper from this ASME archive.

The Important Role of the Inline Refractometer in Juice and Beverage Production

Inline Refractometer in Beverage Production
Every time a consumer purchases a beverage that they enjoy drinking again and again, it is because they love the taste of their favorite drink.  Why do they love it?  Because they have grown to trust that the taste they expect is always the same!  They continue to purchase their favorite drink because it is dependable, reliable, and delicious for them every time!

The consumer gets this feeling because of the consistency of product. The consistency is a function of production processes on the part of the manufacturer. Many drinks and beverages have a certain amount of sugar added for optimal taste.  If the process used to mix the sweetener into the drink deviates, even in the slightest, then product consistency will suffer and so will consumer satisfaction.

Enter the process refractometer.  With its precisely calibrated refractive index set to the exact parameters specified by the manufacturer, the quality and consistency of each and every product batch will fall within the acceptable quality control range.  Any deviation from the "sweetness" settings (degrees Brix) are immediately detected by the inline refractometer, and can be quickly corrected by automated signals sent to a final control element and eliminate the deviation. This ensures a quality product for consumers time in and time out, as well as keeping costly losses due to defective batches at a minimum.

Another area in beverage production where inline refractometers are used is in the container and piping sanitization processes. Each producer must keep their process components cleaned and sanitized to industry and government standards. The beverage manufacturer needs to ensure container cleanliness prior to filling, and also guarantee proper flushing of the process piping during product changeover. The cleaning process is regularly done with some aggressive chemicals, namely hydrogen peroxide and sodium hydroxide.  Inline refractometers are used to ensure the precise concentration of theses two cleaning agents. By using the specific refractive index of each chemical, a process refractometer can control the optimal amount for the cleansing processes, again ensuring quality and consistency on the part of the manufacturer, while offering peace of mind that the process components are cleaned and sanitized to exact industry and government standards.

Process refractometers proved an extremely important role in the production of juices and beverages in both the product consistency, and also the safety and cleanliness of the production process.

For more information, contact Electron Machine Corporation by calling 352-669-3101 or visit their web site at https://electronmachine.com.

MDS Black Liquor Solids Monitoring System Training by Electron Machine Corporation


Electron Machine Corporation offers free MDS training at our facility in Umatilla, Florida. The MDS Monitor Divert System is a BLRBAC compliant Black Liquor solids monitoring system designed specifically for Black Liquor recovery boilers. Classes cover theory, operation, maintenance, troubleshooting and correct usage of the isolation valve. Training is comprehensive, friendly, personalized and provides the hands-on know-how necessary to operate the MDS.

For more information contact Electron Machine Corporation at 352-669-3101 or visit https://electronmachine.com.

Black Liquor Solids Measurement Demo with Electron Machine DSA E-Scan Bench-top Refractometer


This video demonstrates how the DSA E-Scan automatic, bench-top critical angle refractometer is used to measure dissolved solids in black liquor.

The DSA E-Scan is an automatic, bench-top critical angle refractometer with a digital readout and temperature-controlled sample chamber. The instrument is equipped with a menu-driven user interface and is factory calibrated and temperature compensated. 

For more information contact Electron Machine by visiting https://electronmachine.com or call 352-669-3101.

The Preferred Inline Process Refractometer When Safety and Quality Are on the Line


Electron Machine inline process refractometers provide safe, reliable, and accurate process measurement for thousands of customers in the pulp and paper industry, food and beverage industry, and chemical industries. Known for their ruggedly designed instruments, Electron Machine refractometers provide accurate and repeatable measurement of Refractive Index, Dissolved Solids, and Degrees Brix. They also distinguish themselves from competitors by providing fast response to customers needs after the sale. For applications where accuracy and reliability are critical to safety and quality, there really is only once choice - Electron Machine.

Inline Process Refractometer Application Engineering Data: Heavy Black Liquor

Heavy Black Liquor RI vs. Concentration

Refractometers are used in the recovery boiler area to measure heavy black liquor solids in the range of 50-80%. When used to monitor liquor solids to the spray nozzles they become so critical that the recovery boiler will not be operated without them.

As quoted from the Black Liquor Recovery Boiler Advisory Committee, “Refractometers have proven to be effective for black liquor recovery boiler service.” Refractometers are a critical component of the black liquor safe firing system.

Monitoring the recovery boiler firing liquor concentration requires two refractometers in a redundant and specially supervised system. A “Monitor Divert System” employs supervisory circuitry to oversee the correct operation of the refractometer and perform certain logic functions if it detects a failure. The most important of these is the automatic
diversion of the liquor from the furnace into a recirculation loop until the problems can be resolved.

Refractometers used elsewhere in this area include measuring the concentration of the heavy black liquor from storage as it enters the recovery area. They are also used extensively around the cascade or cyclone evaporators to monitor the performance of the direct contact evaporation system. When refractometers are used in the recovery area, the process can be tuned to operate efficiently and most importantly, more safely.

Inline process refractometer on black liquor service
Inline process refractometer on black liquor service.

What Is An Inline Process Refractometer?

Inline sensing head
Inline sensing head
Inline process refractometers are used in the food processing, beverage, pulp and paper processing, chemical, power, and primary metal industries. Inline process refractometers save labor costs, streamline the manufacturing process, and improve quality by detecting inconsistencies in a product early in the production phase. They continuously monitor, control and report the on Degrees Brix, Percent Solids, Dissolved Solids, SGU, and refractive index of a brand variety of solutions.

Inline process refractometers are made up of three main components:
Control console
Control console
  1. The inline sensing head, which is inserted to a pipe and is exposed the the product for direct measurement. The sensor is connected by a cable to the second main component, the control console.
  2. The control console, which houses the display, electronics, power supply and output connections. Both the sensor and the control module are designed for high accuracy and precise control. Their housing and cabling are often specialized for use in varying extreme conditions and very demanding environments.
  3. The process adapter, which connects the sensor mechanically to the process piping. Adapters are configured for the pipe size and application they are used on and are available in many configurations. Some of the more common adapter options are:
    • Lined - For extremely corrosive applications.
      Mounting adapters
      Mounting adapters
    • Inline - For most applications with pipeline sizes less than 2”.
    • Isolation - For critical process lines that cannot normally be shut down.
    • Sanitary - For applications on a sanitary pipeline.
    • Spool - For most applications with pipeline sizes greater than 2”.
    • Vessel - For applications where the sensing head is to be mounted directly onto a vessel or vacuum pan.
    • Weld-in - For economical mounting.

The Basics of Process Refractometers

Light refractionA refractometer is a process instrument capable of determining a solution's refractive index. Light bends and changes velocity as it travels from one media into another through the media interface. When light traveling through air enters liquid, the light rays change direction by an amount determined by the liquid's density.

Angle of refraction refers to the magnitude the light bends as it exits one media and enters the interface of another. With the angle of refraction defined by their densities, different liquids display different amounts of refraction - for example, a higher density juice such as orange juice will have significantly different refraction than cranberry juice, because of its higher density.

Light refraction
Light bends when traveling through
different media. That's why this pencil
appears to be "broken" when it enters
the water.
A liquid's refractive index relates to the amount of light bending that liquid displays. The greater the bending, the greater the refractive index. The lower the bending, the lower the refractive index.

Standard tables are available that correlate refractive index to a variety of materials. These same tables also correlate refractive index to varying concentrations of particular liquid media at a particular temperature. Take corn syrup for example. Different refractive indexes are observed for different corn syrup samples of different concentrations. Therefore, by using a process refractometer to observe the refractive index of a particular corn syrup sample, a determination of the concentration of that particular sample can be made. By referring to the table or scale that correlates the refractive index to concentration at a particular fixed temperature, liquid concentration can be determined.

The refraction index of the liquid medium readings will vary at different temperatures, and therefore, the sample's temperature must be measured and compensated for in order for refractive index readings to be accurate and repeatable.

Refractive index measurements have been used for process control in the food, juice and beverage industries for decades, with the most common applications being the measurement of sugars (Brix) and total dissolved solids (TDS). Large scale production and processing of fruit juices, jams, tomato products, wine, beer, coffee, and many other products rely on industrial refractometers for quality and consistency.

For more information contact Electron Machine Corporation by visiting https://electronmachine.com or by calling 352-669-3101.

What Are Critical Angle Refractometers?

Critical angle refractometersCritical angle refractometers use the principle of critical angle refractometry by which dissolved solids content is related to the refractive index of the solution. The basic refractometer unit unit consists of a sensing head and control console. The sensing head is mounted on the adapter installed in the process line and the process solution is usually viewed through a transparent window. The surface of the solution, which is in contact with the window, is optically scanned by an octagonal prism.

The refractive index is determined by a beam of light from the prism which repeatedly sweeps at a varying angle at the surface of the solution. At a point in the cycle, as the angle between the incident light beam and the surface decreases, the light beam instead of refracting into the solution is reflected back into the optical system. The point of change from refraction to reflection depends on the refractive index of the solution and is known as the critical angle. The prism scans the beam of light through the critical angle. A photodetector measures the alternating light and dark periods and its electrical output is used to provide a readout of refractive index in the required units (R. I., % concentration, degrees Brix., etc.).

Critical angle refractometers
Optical Path
Diagram - How They Work

Critical angle refractometers use an LED as a light source and utilizes state of the art CCD (charge coupled device) technology to accomplish scanning the reflected light returned from the prism.

Light radiated from the LED passes through the prism surface to be reflected off mirror 1 to the prism-to-process interface. The light reaching this interface intersects the same interface over a series of angles chosen to include critical angle for the process being measured. Light intersecting the interface at an angle greater than critical angle is refracted into the solution. Light intersecting the interface at less than critical angle is reflected up to mirror 2 and out of the prism up to the CCD linear array to be scanned.

A principal advantage of critical angle refractometry is that it measures the index of refraction at the surface of the process solution. Since the light beam does not penetrate into the solution, the instrument can be used for opaque as well as transparent materials.

Electron Machine Corporation Highlighted for Renewable Energy Investment

From the original article titled "Electron Machine Makes Big Investment In Umatilla Future" and reprinted with permission from The North Lake Outpost, Vol. 40, No 4.

With one eye cast to preserving its deep roots in Umatilla, and another to an efficient, competitive future, the Electron Machine Corporation recently embarked on a major upgrade of its facility. The firm, with decades of history in Umatilla manufacturing and distributing products that provide process measurement for the pulp and paper industry, the food and beverage industry, and the chemical industry, recently faced a crossroads.

Solar panel installation
Solar panel installation.

“We are a small firm. We have to be more nimble. We have to think differently to compete in the industries we’re serving,” said C.A. Vossberg, third generation of the Vossberg family who today oversees the firm’s operations.

Electron Machine HQ
Electron Machine HQ
Facing the need to undertake major upgrades on the company’s aging 25,000 square foot building, a large portion of which isn’t fully utilized, there was discussion about where the future should be.

“We don’t have to have a brand new building, but we need reliability,” Vossberg said, reporting of roofing issues that were hampering operations.

“We said, ‘What is best for the long term?”

 Solar panel installation
Solar panel installation.
Eventually, the decision was made to fix the roof, and more. After nine months, during which countless delays brought about by Hurricane Irma made things even worse, the firm is closing in on completion of a project that features a large solar panel farm that is set to generate enough solar power to run the building.

Vossberg said the idea for solar power at the plant isn’t a new one, given the building’s large, flat roof. But technology has improved to the point to make the project more viable.
“The project is sized so that our net energy consumption over the year will be next to zero,” Vossberg said, a big positive when looking to the financial bottom line of operating at its current location.

There is a big cost to installing such a large solar system. However, Electron Machine has applied for a grant through the USDA to help offset the cost.

“They have a rural America program that encourages employees to remain there, and not move into the city,” Vossberg said. “That’s exactly what we are trying to do.”

Solar powered roof
Bird's-eye view of Electron Machine's solar charged roof.
Vossberg has been a proponent of rural job creation, supporting Lake Tech’s new manufacturing training facility in Eustis which is designed to increase employability in the manufacturing field, and can be found attending City of Umatilla functions regarding the Umatilla Municipal Airport. Electron Machine is among the users of the airport, and Vossberg has said it’s existence is an important cog in the wheel that allows his business to continue to function here.

“Being here, it’s who we are,” Vossberg said.

Refractometers for Industry

Industrial process refractometers provide safe, reliable, and accurate process measurement for the pulp and paper industry, the food and beverage industry, and the chemical industry. Electron Machine manufactures the world's most rugged refractometers and has thousands of refractometers controlling processes, improving quality, and saving cost in these industries around the world.


Technical Sales Representatives: The Often Underutilized Asset

Work with your technical sales rep
Work with your technical sales rep.
It will pay off in ways you haven't imagined.
Process refractometers are sold with the support of sales engineers working for the local distributor or representative. By realizing what these specialists have to contribute, and taking advantage of their knowledge and talent, you will save time and money and experience a better project outcome.

Consider these contributions:

Product Knowledge:
Sales engineers, by the nature of their job, are current on new products, their capabilities and their proper application. Unlike information available on the Web, sales engineers get advanced notice of product obsolescence and replacement. Also, because they are exposed to so many different types of applications and situations, sales engineers are a wealth of tacit knowledge that they readily share with their customers.

Experience:
As a project engineer or leader, you may be treading on fresh ground with a refractometry requirement for your current assignment. You may not have a full grasp on how to handle a particular challenge presented by a project. If this is the case, call in the local technical sales representative - there can be real benefit in connecting to a source with past exposure to your current requirement.

Of course, sales engineers will be biased. Any solutions proposed are likely to be based upon the products sold by the representative. But the best sales people will share the virtues of their products openly and honestly, and even admit when they don’t have the right product. This is where the discussion, consideration and evaluation of several solutions become part of achieving the best project outcome.

Whatever your stake in an upcoming or ongoing project, it's highly recommended you develop a professional, mutually beneficial relationship with a technical sales expert, a problem solver. Look at a relationship with the local sales engineer as symbiotic. Their success, and your success, go hand-in-hand.