This blog focuses on industrial, inline process refractometers and their use in industrial applications. Refractometry is used to measure the refractive index of a substance in order to determine its composition or purity. Posts include information on theory, construction, installation, new products and new markets.
Electron Machine Corporation | Umatilla, FL | PHONE: 352-669-3101 | ElectronMachine.com
Inline Process Refractometers for Pulp & Paper Mill Applications
Green Liquor Process Management with Inline Refractometers
Green liquor is the dissolved concentrations of sodium sulfide, sodium carbonate, and other substances from the paper-making process's recovery boiler. Measuring its density is an essential aspect of paper production quality.
The Electron Machine MPR EScan is used to measure the green liquor dissolved density, or TTA, at two different points in the process: after the green liquor dissolving tank and after the green liquor clarifier. With the refractometer sensing head positioned directly in the primary process lines, inline measurement enables real-time management of green liquor dilution to meet target TTA set-points. Excessive green liquid density and the accompanying harmful imminent crystallization within the dissolving tank are also indicated (and prevented) by the measurement.
One considerable challenge is sensor head scaling associated with green liquor. An optical coating forms on the refractometer sensing head. The coating must be dealt with efficiently and quickly to maintain the accuracy and with minimum maintenance. This is key for the refractometer's ability to provide an acceptable measurement cycle and duration. The maintenance necessary to keep the cleaning system running efficiently is challenging.
Controlling scaling is optimal when the variance of green liquor solids is reduced by automatically adjusting weak-wash dilution with the MPR E-Scan refractometer. Additionally, pressurized water, heated to the process temperature, rinses the refractometer optical components effectively, resulting in a further scaling reduction. The end outcome is advantageous for both control and acceptable maintenance scheduling.
By limiting thermal changes, minimizing maintenance, and providing a dependable measurement source for automatic inline control, refractometers with accompanying heated high-pressure water cleaning systems deliver excellent results in improving green liquor processing.
Visit www.electronmachine.com or contact 352-669-3101 for more information.
Industrial Refractometers and Green Liquor Scale Mitigation
Industrial inline process refractometers, such as Electron Machine's MPR E-Scan, are used to measure the green liquor dissolved density, or TTA, at two stages in the process: after the green liquor dissolving tank and after the green liquor clarifier. The inline measurement, with the refractometer sensing head mounted directly in the main process lines, allows real-time control of green liquor dilution to meet target TTA set-points. The measurement is also used to indicate (and prevent) excessive green liquor density and the resulting dangerous impending crystallization within the dissolving tank, and lower the potential for scaling.
Refractometer Optical Sensor Cleaning System |
With overall quality and safety in mind, the use of a refractometer sensing head cleaning system is compulsory. The use of ancillary inline cleaning systems, such as Electron Machine's HPC-2 High Pressure Cleaner, that use pressurized water heated to the process temperature, will clean the refractometer optical components and therefore mitigate scaling issues and the related quality, safety, and production problems in the kraft process.
Process Refractometers for Black Liquor and Green Liquor Processes in Pulp and Paper
A very fundamental explanation of the Kraft Process:
MPR E-Scan and heated high-pressure cleaning system. |
Electron Machine's decades of effort and experience in the pulp and paper industry led to the development of their MPR E-Scan refractometer in tandem with their heated high-pressure cleaning system. The resulting combination ensures efficient optical coating removal and maintenance minimization so as to ensure a reliable measurement source for automatic online control.
Accurate Green Liquor Density Control with Reduced Maintenance
Video: Applying Refractometers to the On-line Measurement of Green Liquor Density
Applying Refractometers to the On-line Measurement of Green Liquor Density
Overview of Chemical Recovery Processes in Pulp & Paper Mills
Figure 1 |
The production of kraft and soda paper products from wood can be divided into three process areas:
- Pulping of wood chips
- Chemical recovery
- Product forming (includes bleaching)
Figure 2 |
The purpose of the chemical recovery cycle is to recover cooking liquor chemicals from spent
cooking liquor. The process involves concentrating black liquor, combusting organic compounds, reducing inorganic compounds, and reconstituting cooking liquor.
Cooking liquor, which is referred to as "white liquor, is an aqueous solution of sodium hydroxide (Na01) and sodium sulfide (Na2S) that is used in the pulping area of the mill. In the pulping process, white liquor is introduced with wood chips into digesters, where the wood chips are "cooked" under pressure. The contents of the digester are then discharged to a blow tank, where the softened chips are disintegrated into fibers or "pulp. The pulp and spent cooking liquor are subsequently separated in a series of brown stock washers: Spent cooking liquor, referred to as "weak black liquor, from the brown stock washers is routed to the chemical recovery area. Weak black liquor is a dilute solution (approximately 12 to 15 percent solids) of wood lignins, organic materials, oxidized inorganic compounds (sodium sulfate (Na2SO4), sodium carbonate (Na2003)), and white liquor (Na2S and Na0H).
In the chemical recovery cycle, weak black liquor is first directed through a series of multiple-effect evaporators (MEE's) to increase the solids content to about 50 percent. The "strong. (or "heavy") black liquor from the MEE's is then either oxidized in the BLO system if it is further concentrated in a DCE or routed directly to a concentrator (NDCE). Oxidation of the black liquor prior to evaporation in a DCE reduces emissions of TRS compounds, which are stripped from the black liquor in the DCE when it contacts hot flue gases from the recovery furnace. The solids content of the black liquor following the final evaporator/concentrator typically averages 65 to 68 percent.
Concentrated black liquor is sprayed into the recovery furnace, where organic compounds are combusted, and the Na2SO4 is reduced to Na2S. The black liquor burned in the recovery furnace has a high energy content (13,500 to 15,400 kilojoules per kilogram (kJ/kg) of dry solids (5,800 to 6,600 British thermal units per pound {Btu/lb} of dry solids)), which is recovered as steam for process requirements, such as cooking wood chips, heating and evaporating black liquor, preheating combustion air, and drying the pulp or paper products. Particulate matter (PM) (primarily Na2SO4) exiting the furnace with the hot flue gases is collected in an electrostatic precipitator (ESP) and added to the black liquor to be fired in the recovery furnace. Additional makeup Na2SO4, or "saltcake," may also be added to the black liquor prior to firing.
Molten inorganic salts, referred to as "smelt," collect in a char bed at the bottom of the furnace. Smelt is drawn off and dissolved in weak wash water in the SDT to form a solution of carbonate salts called "green liquor," which is primarily Na2S and Na2CO3. Green liquor also contains insoluble unburned carbon and inorganic Impurities, called dregs, which are removed in a series of clarification tanks.
Decanted green liquor is transferred to the causticizing area, where the Na2CO3 is converted to NaOH by the addition of lime (calcium oxide [Ca0]). The green liquor is first transferred to a slaker tank, where Ca0 from the lime kiln reacts with water to form calcium hydroxide (Ca(OH)2). From the slake, liquor flows through a series of agitated tanks, referred to as causticizers, that allow the causticizing reaction to go to completion (i.e., Ca(OH)2 reacts with Na2CO3 to form NaOH and CaCO3).
The causticizing product is then routed to the white liquor clarifier, which removes CaCO3 precipitate, referred to as "lime mud." The lime mud, along with dregs from the green liquor clarifier, is washed in the mud washer to remove the last traces of sodium. The mud from the mud washer is then dried and calcined in a lime kiln to produce "reburned" lime, which is reintroduced to the slaker. The mud washer filtrate, known as weak wash, is used in the SDT to dissolve recovery furnace smelt. The white liquor (NaOH and Na2S) from the clarifier is recycled to the digesters in the pulping area of the mill.
At about 7 percent of kraft mills, neutral sulfite semi-chemical (NSSC) pulping is also practiced. The NSSC process involves pulping wood chips in a solution of sodium sulfite and sodium bicarbonate, followed by mechanical de-fibrating. The NSSC and kraft processes often overlap in the chemical recovery loop, when the spent NSSC liquor, referred to as "pink liquor," is mixed with kraft black liquor and burned in the recovery furnace. In such cases, the NSSC chemicals replace most or all of the makeup chemicals. For Federal regulatory purposes, if the weight percentage of pink liquor solids exceeds 7 percent of the total mixture of solids fired and the sulfidity of the resultant green liquor exceeds 28 percent, the recovery furnace is classified as a "cross-recovery furnace.'" Because the pink liquor adds additional sulfur to the black liquor, TRS emissions from cross recovery furnaces tend to be higher than from straight kraft black liquor recovery furnaces.
Industrial Refractometers in Action: Pulp & Paper Mill
The Electron Machine Corporation pioneered the use of refractometers to accurately measure black liquor dissolved solids nearly 50 years ago. Our long history with this application has resulted in numerous design features that specifically address problems associated with this harsh process measurement. Electron Machine refractometers have been accurately measuring green liquor solids in the paper industry for more than 30 years.
For more information visit http://www.electronmachine.com or call 352-669-3101.
Refractometers for Pulp and Paper Processing
Industrial Inline Refractometer for Green Liquor Density in Pulp & Paper Plant
Inline Refractometers Tough Enough for Paper Plant Black and Green Liquor Lines
Refractometer and HPC Adapter with High Pressure Purge System |
It's said the only thing a pulp and paper plant doesn't reuse is the "shade the building casts". The processes used in the production of pulp and paper are very efficient when you consider the reuse of energy and by-products. The efficiency comes at a cost though - through very hostile atmospheres and demanding operating conditions for process equipment.
For example, the "kraft process" (also known as the sulfate process) is the method to convert wood chips into pulp and then to cellulose fibers. This is done by mixing the wood chips with sodium hydroxide and sodium sulphate, soaking, cooking and processing.
Here's a very basic explanation of the kraft process. Wood chips are soaked and processed in sodium hydroxide and sodium sulphate mixture known as "white liquor". After the wood chips are impregnated with white liquor, they are then cooked in digesters to break the wood down into cellulose. The solid pulp is then separated and the remaining fluid is referred to as "black liquor". Black liquor is further processed to remove solids and chemicals which are to be re-used in the pulping process. One of the final by-products is "green liquor" which contains sodium carbonate and sodium sulfide and is then reacted with lime to regenerate more white liquor.
All of these steps expose instruments, process equipment, piping, and valves to very tough environments. Electron Machine Corporation, a manufacturer of extremely rugged inline process refractometers, has been actively refining the use of refractometers for measuring green and black liquor density for over 30 years.
The scaling associated with these applications results in an optical coating on the refractometer sensing head. If this scaling can be controlled to allow an acceptable duration of on-line measurement, and then effectively removed when coating occurs, the accuracy of the refractometer can be fully utilized with minimal maintenance. The primary issue then becomes the maintenance required to keep the cleaning system operating effectively.
Electron Machine's efforts led to a system using their "almost indestructible" MPR E-Scan Refractometer combined with heated high-pressure water for cleaning. The resulting combination provides an effective removal of optical coatings by reducing thermal changes and minimizing maintenance to allow for a reliable measurement source for on-line automatic control.
If you're interested in refractometry in pulp and paper processing, look no further than Electron Machine. They have the history, the experience, and the toughest inline refractometer on the planet.
For more information, visit http://www.electronmachine.com or call (352) 669-3101.
Reliably and Consistently Measuring Green Liquor Density in the Paper Mill
Paper mill green liquor density measurement system. |
The difficult scaling associated with green liquor results in an optical coating on the refractometer sensing head. If this scaling can be controlled to allow an acceptable duration of on-line measurement, and then effectively removed when coating occurs, the accuracy of the refractometer can be fully utilized with minimal maintenance. The primary issue then becomes the maintenance required to keep the cleaning system operating effectively.
Using inline refractometers with accompanying heated high-pressure water cleaning systems provides excellent results in effective removal of optical coatings by reducing thermal changes, minimizing maintenance, and allowing for a reliable measurement source for on-line automatic control.
The Electron Machine MPR EScan is used to measure the green liquor dissolved density, or TTA, at two stages in the process: after the green liquor dissolving tank and after the green liquor clarifier. The in-line measurement, with the refractometer sensing head installed directly in the main process lines, allows real-time control of green liquor dilution to meet target TTA set-points. The measurement is also used to indicate (and prevent) excessive green liquor density and the resulting dangerous impending crystallization within the dissolving tank.
Electron Machine MPR Escan |
Reducing the variation of green liquor solids by automatically controlling weak-wash dilution with the MPR E-Scan refractometer results in a reduction in scaling. Scaling issues are further reduced when pressurized water, heated to the process temperature, is used to effectively clean the refractometer optical components. The compound result is beneficial for both control and maintenance.