A New Prism Purge Pak from Electron Machine

A New Prism Purge Pak from Electron Machine

During operation, the optical components of inline refractometers can become contaminated with residues, particles, or other substances present in the process fluids. This contamination can lead to inaccurate measurements and reduced efficiency. Automatic inline refractometer cleaning systems, called "Prism Purge-Paks," are employed to address this issue.

The new Electron Machine Prism Purge Pak is designed for applications requiring steam cleaning for the refractometer sensor. This new design allows for convenient installation of purge and condensate solenoids saving valuable installation time and assuring proper purge action. Mounting brackets are available to install directly onto our Isolation Valve and Spool Adapter.

If you require further information about the use, installation, and maintenance of the Prism Purge Pak, please do not hesitate to contact Electron Machine directly. You can reach them by dialing +1 352-669-3101. Their knowledgeable staff will be ready to assist you with inquiries regarding our refractometer cleaning systems.

The Role of Inline Process Refractometers in Consistent Quality Assurance of Tomato Products

Inline Process Refractometers for Tomato Products

In the fast-paced world of large-scale tomato processing, ensuring consistent quality and efficiency is paramount. Inline process refractometers are crucial, especially in producing popular tomato-based products like canned tomatoes, tomato paste, sauce, ketchup, soup, salsa, juice, pizza sauce, and marinara sauce. These sophisticated instruments have revolutionized the tomato processing industry, offering numerous benefits over traditional methods.

Refractometers measure the refractive index of a substance, which, in the case of tomato processing, relates directly to the sweetness and solid content of tomato products. This measurement is vital because it determines the final product's quality and consistency. For instance, the desired thickness, texture, and sweetness depend heavily on the proper concentration of solids and accurate Brix measurement in tomato juice, sauce, ketchup, or soup.

The primary advantage of using inline process refractometers is their ability to provide real-time measurements directly in the processing line. This immediacy allows manufacturers to make on-the-fly adjustments, ensuring the product remains within the desired specifications throughout production. Traditional methods often involve taking samples to a lab for analysis, leading to delays and potential inconsistencies since the process continues while the model is under evaluation.

Another key benefit is the reduction in waste and increase in efficiency. With real-time monitoring, processors can quickly detect and correct deviations from the desired solid content, reducing the likelihood of producing a batch that doesn't meet quality standards. This immediate feedback loop saves time and reduces the waste of materials, leading to a more sustainable and cost-effective operation.

Moreover, inline refractometers enhance product consistency. In the competitive food industry, consumers expect each bottle of ketchup or can of tomato soup to taste the same as the last. Maintaining this consistency is easier with continuous, real-time monitoring. Processors can ensure that each batch meets the exact specifications, leading to a more reliable and trusted product.

These devices also contribute significantly to automation in the processing line. By integrating refractometers with the processing plant's control system, manufacturers can automate adjustments to the process based on the refractometer's readings. This level of automation not only streamlines production but also minimizes the chances of human error, further enhancing the consistency and quality of the product.

Applying inline process refractometers also ensures regulatory compliance and meets nutritional labeling requirements. The accurate measurement of solid content is essential for labeling products correctly in terms of their nutritional content, which is a legal requirement in many jurisdictions. This precision helps manufacturers avoid the costly consequences of mislabeling, including product recalls and damage to brand reputation.

Finally, using these refractometers is a testament to the industry's commitment to adopting advanced technologies for quality assurance. They signify a shift from traditional, labor-intensive methods to more efficient, precise, and reliable automated processes, improving the quality and consistency of tomato-based products and positioning the manufacturers as industry leaders who prioritize quality and innovation.

Inline process refractometers are invaluable tools for the large-scale production of tomato-based products. They offer real-time monitoring and control, enhance product consistency, reduce waste, aid in regulatory compliance, and support the broader move towards automation in the food processing industry. Their role is pivotal in ensuring that the ketchup, tomato soup, or marinara sauce that reaches the consumer is of the highest quality every single time.

Electron Machine Corporation
https://electronmachine.com
+1 352-669-3101

Sweet Precision: How Inline Process Refractometers Transform Large Scale Ice Cream Production

Inline Process Refractometers Transform Large Scale Ice Cream Production

Enhancing the efficiency and quality of large-scale ice cream production is pivotal for success in the competitive dairy industry. One of the critical factors in achieving this is the precise measurement of milk solids and sugar concentrations during the manufacturing process. Inline process refractometers play a crucial role, particularly the Electron Machine MPR E-Scan refractometer.

The core function of these refractometers is to directly measure the dissolved solids in the mixture, which is a crucial indicator of the product's quality. This measurement, typically expressed in Brix units, accurately represents the concentration of sugar and other sweeteners like sucrose or fructose in the mix. The most significant advantage of this method is its immunity to interference from bubbles or suspended particles, which often pose challenges in other measurement techniques.

In ice cream production, the Electron Machine MPR E-Scan refractometer excels by offering real-time measurements of dairy and sweetener concentrations. Its application is not just limited to the initial stages; it actively contributes throughout the production process. As the ingredients enter the mixing tank, the refractometer measures their Brix levels, allowing immediate adjustments to align with the desired final concentration. This inline measurement ensures consistent quality and taste in the final product.

Moreover, the refractometer's utility extends to the post-mixing phase. Additional measurements of the mixed product enable further fine-tuning of the composition before the product heads for packaging. This step is crucial in maintaining the uniformity and quality of the ice cream.

Installing the Electron Machine Corporation MPR E-Scan in a factory offers several tangible benefits. Firstly, it ensures precise process control, which is essential for consistently producing high-quality ice cream. This precision enhances the product quality and contributes to economical operation, directly impacting the profit margins positively. Secondly, by maintaining the desired process concentration, there is a significant reduction in offline testing. This reduction not only streamlines the production process but also elevates the overall quality control mechanisms.

Furthermore, implementing such advanced technology leads to optimization in workforce management. Reducing the need for manual testing and adjustments allows the workforce to focus on other critical aspects of production. This optimization also contributes to minimizing product waste, a common issue in large-scale production. The ability to make precise adjustments based on real-time data reduces the likelihood of producing batches that do not meet quality standards, thereby saving both time and resources.

Integrating the Electron Machine MPR E-Scan refractometer into ice cream production lines is a strategic move towards enhancing product quality, reducing waste, and optimizing operational efficiency. Its ability to provide accurate, real-time measurements is a game-changer in the industry, ensuring that each batch of ice cream meets the highest standards of quality and taste.

Electron Machine Corporation
https://electronmachine.com
+1 352-669-3101

Shedding Light on Quality: The Role of Process Refractometers in Tomato Processing

Shedding Light on Quality: The Role of Process Refractometers in Tomato Processing

Refractometers have carved out a significant niche in various industries, but their role in the food sector, particularly with tomato products, stands out as noteworthy. Let's look into the application of process refractometers to ensure tomato-based products' quality, consistency, and safety.

What is a Process Refractometer?


At its core, a refractometer is a device that measures the extent to which light is bent (or refracted) when it passes through a substance. This refraction is directly related to the concentration of solutes in a solution. In the food industry, process refractometers gauge the concentration of sugars, salts, and other soluble substances in food products in real time, making them invaluable in maintaining product consistency.

Importance in Tomato Products


The quality of tomato products is often gauged by their consistency and the concentration of soluble solids, primarily sugars and acids. Given that tomatoes can vary in sugar content based on their variety, maturity, and growing conditions, ensuring consistency in commercial products is challenging. Here's where process refractometers come into play:
  1. Brix Measurement: Brix is a scale that indicates the sugar content of an aqueous solution. One degree Brix corresponds to 1 gram of sucrose in 100 grams of solution. In the tomato industry, the Brix measurement helps determine the sugar concentration in tomato products like sauces, ketchup, and pastes. A consistent Brix level ensures a uniform taste across batches.
  2. Ensuring Quality: Besides flavor, the concentration of soluble solids in tomato products affects texture and viscosity. By constantly monitoring this concentration, manufacturers can make real-time adjustments to the processing parameters, ensuring the end product maintains the desired quality.
  3. Economic Considerations: Overconcentration means more tomato content than necessary, which can waste resources, while underconcentration might not meet industry standards or consumer expectations. By maintaining the right concentration, manufacturers can optimize costs.
  4. Safety Concerns: Water activity in a product can influence its susceptibility to microbial growth. By monitoring and controlling the concentration of solutes, manufacturers can enhance tomato products' safety and shelf life.

Practical Applications


  • Tomato Paste Production: Refractometers ensure that the concentration process yields a consistent product for direct consumption or as a base for other tomato-based products.
  • Ketchup & Sauces: Beyond tomatoes, these products often contain additional ingredients like spices, sugars, and vinegar. Monitoring the overall concentration ensures a balanced product that meets the desired flavor profile and texture.
  • Canned Tomatoes: While these are processed less than paste or ketchup, providing the brine or juice's concentration can affect the product's overall taste and shelf life.
  • Juice Production: Whether it's pure tomato juice or a blend, maintaining the right Brix level is essential for consistent flavor and quality.

The importance of process refractometers in the food industry, especially in producing tomato products, cannot be overstated. They play a pivotal role in maintaining product quality, safety, and consistency, ensuring that consumers receive the same great taste and texture with every purchase. As technology advances and the demand for consistent, high-quality food products increases, the reliance on such tools will only grow.

Electron Machine Corporation
https://electronmachine.com
+1 352-669-3101

Electron Machine Corporation: Pioneering Industrial Refractometers

Electron Machine Corporation and the Vision of Carl Vossberg, Jr.: Pioneering Industrial Refractometers

The refractometer, an instrument that measures the refractive index of a substance, has long been a staple in labs across various scientific fields. However, the transition of this tool from its conventional lab-bound limitations to vast industrial applications was driven mainly by the innovative efforts of the Electron Machine Corporation under the leadership of its founder, Carl Vossberg, Jr.

Electron Machine Corporation takes immense pride in its distinguished history and entrenched presence in the electronic instrumentation industry. Carl Vossberg, Jr., the brain behind Electron Machine Corporation, pursued electronics at City College of New York, Columbia University, and the Massachusetts Institute of Technology. During WWII, he collaborated with the U.S. Office of Strategic Service (now the CIA), contributing to creating remote radio transponders, artillery tracking systems, weapon fire detection controllers, and video transmission.

Post-war, Carl Vossberg Jr. endeavored to harness his electronics expertise for industrial purposes. He established Electron Machine Corporation in 1946, initially operating out of a radiator repair shop in New York. The company birthed and licensed innovative instruments, such as the first commercial x-ray thickness gauge, optical cable diameter gauges, and an industrial process control computer.

By 1952, Electron Machine Corporation relocated to Umatilla, Florida, where it operates today. Recognizing a gap in the burgeoning concentrated Citrus industry, the company developed the first in-line process refractometer. 

Subsequently, they constructed a 25,000-square-foot manufacturing facility, maintaining their roots in Umatilla. In 1977, the mantle passed to Carl Vossberg III, who amplified the refractometer's applications worldwide across the food, chemical, and pulp/paper sectors. With the integration of microprocessor technology, the instruments saw marked enhancements in accuracy and reliability. 

Today, under continued third-generation C.A. Vossberg's leadership, the corporation thrives as a vertically integrated manufacturer, ensuring unparalleled service and support by efficiently controlling its manufacturing timeline, leading innovation, maintaining high-quality standards, and fostering partnerships for community engagement.

The company achieves exceptional quality control by integrating contemporary technology and methodologies with foundational designs. Modern advancements at the company encompass in-house microprocessor and DSP software design, surface-mount PC card design and assembly, 3D CAD/CAM design, CNC machining, and MIG/TIG welding. Moreover, the founder's pioneering spirit remains alive and influential, guiding the company's ongoing research and product development endeavors.

Electron Machine Corporation
https://electronmachine.com
+1 352-669-3101

Process Refractometers in The Kraft Pulping Process

Process Refractometers in The Kraft Pulping Process

Process refractometers are optical instruments that measure the refractive index of a substance to determine its concentration. They are widely used in the pulp and paper industry, particularly in the Kraft pulping process, to measure the concentration of essential chemicals in white, green, brown and black liquors.

The kraft process, which employs sodium hydroxide (NaOH) and sodium sulfide (Na2S) to convert wood into pulp, is the predominant pulping technique in the pulp and paper sector. This method is responsible for an annual production of approximately 130 million tons of kraft pulp worldwide, contributing to two-thirds of global virgin pulp output and over 90% of chemical pulp. Kraft pulp's superior strength, the process's compatibility with nearly all types of softwood and hardwood, and its economic benefits stemming from a high chemical recovery efficiency of about 97% make the kraft process more favorable than alternative pulping methods.

Process refractometers apply in the following steps of the Kraft pulping process:
  • Green Liquor Control: After burning the black liquor, the resulting green liquor contains sodium carbonate (Na2CO3) and sodium sulfide (Na2S). Refractometers measure the green liquor's concentration, which helps optimize the causticizing process. This process involves converting sodium carbonate to sodium hydroxide by adding lime (calcium oxide, CaO). Accurate measurement of green liquor concentration ensures the right amount of lime is added, thus optimizing the efficiency of the causticizing process and reducing waste.
  • Brown Liquor Control: After the causticizing process, the remaining liquor, called "brown liquor," primarily contains sodium hydroxide (NaOH) and sodium sulfide (Na2S). The concentration of brown liquor is critical for achieving the desired pulp quality and yield. Refractometers help maintain the correct concentration of brown liquor, ensuring consistent pulp quality and minimizing chemical waste.
  • Black Liquor Evaporation: Black liquor is concentrated through evaporation to increase its solids content before being burned in the recovery boiler. Process refractometers monitor the concentration of the black liquor, ensuring optimal evaporation rates and preventing potential issues in the recovery boiler.
  • White Liquor Quality Control: Refractometers can also be used to monitor the concentration of white liquor, helping maintain the desired alkalinity and sulfide levels, directly affecting the cooking process and pulp quality.
  • Recirculation and Monitoring: Process refractometers can be installed at various points in the Kraft pulping process, such as in recirculation lines, to monitor liquor concentrations continuously and adjust process parameters accordingly.
Process refractometers play a crucial role in Kraft pulping by monitoring and controlling the concentrations of green, brown, and black liquors. Their accurate measurements ensure the efficient use of chemicals, minimize waste and help maintain consistent pulp quality.

Electron Machine Corp.
+1 352-669-3101